

New Materials Innovations in CMOS Devices

Elements Employed in Silicon Technology

- •New materials and smaller features drive need for characterization techniques
- Need compositional and electrical information at device dimensions

IBM at NSLS-I

- in-situ real-time annealing effects
 - phase formation in silicides
 - diffusion barrier failure T
 - solder formation
 - crystallization of phase-change materials

- phase identification (GIXD)
 - high-κ dielectric ultra-thin films, intermetallics, phase-change materials, silicides
- texture and grain size (pole figures, GIXD, HRXRD)
 - axiotaxy in silicides and germanides, Cu features (interconnects)

- dielectrics, silicides, phase-change materials, etc.
- strain in thin films and features (HRXRD, microdiffraction)
 - SiGe/Si, Si:C/Si, etc.

to understand and improve materials and processes used in making devices

TiN

GeSb (W=20nm

Endstation instrumentation at X20

- Standard diffraction
- Triple-axis diffraction
- Reflectivity
- GIXD
- SAXS
- Four-circle Huber used for pole figures, reflectivity, structure ID, strain relaxation, etc.

Time-resolved scattering

- High temp. annealing chamber
- Diffraction into fast linear or area detector
- Resistance and optical scattering
- •Used with multilayer monochromator for *in-situ* measurements of phase transformations, barrier failures, kinetics, texture evolution.

Microdiffraction

- Standard diffraction
- Fluorescence
- Heating/electrical stage
- Used for diffraction topography, grain or local tilt and mosaic, elemental mapping.

Time-resolved in-situ XRD, resistance and light scattering

- Fast data collection and analysis
- Intense signal

Transformation temps Morphology changes Kinetics

- Quick evaluation of large array of variables processes parameters film thicknesses dopants
- Size effects

limitations:

- detector
- reciprocal space access
- sample turnaround
- •?

What will microelectronics look like in 8 years?

Gate Oxide no longer scales:

- -Need to reduce gate leakage
- -Power Density increasesmore transistors with constant power
- -Power constant Gate can not turn off channel effectively if gate oxide is increased

Fundamental Atomic Limit to Scaling Recipe

Oxide thickness is approaching a few atomic layers

As long as IBM makes hardware, we'll need materials and process analysis...

IBM Needs at NSLS-II

- High-throughput/rapid access very important:
 - phase ID, texture, failures, phase formation, process variables
- Guaranteed access to high-throughput time/temp-resolved XRD
- Access to thin film analysis techniques
 - GIXD, texture, XRR, Bragg-Brentano, etc.
- Access to micro/nano diffraction
- Possible access to:
 - nanotomography (Xradia full-field microscope?)
 - EXAFS
 - PDF?
- Minimum time gap in access between NSLS and NSLS-II

Tentative plans

- Upgrade of high-throughput TR endstation on X20C (in stages):
 - dome for more reciprocal space access
 - special diffractometer
 - RTA heater and laser annealing capabilities
 - ports for adding probes
 - area, linear and point detectors
 - automated sample changing
 - automated evacuation and ambient control
 - remote access
- New 6-circle for X20A
- Move both to NSLS-II
- If you are interested, send email to JLJ@BNL.GOV